Hard Evidence Shows El Niño Swings More Violently in the Industrial Age

El Niño weather events part of a new off-weather pattern.
On the right, satellite composition of El Niño in 1997, and on the left, El Niño in 2015. Both were extreme El Niño events that new hard evidence says are part of a new and odd climate pattern. (Image: via NOAA)

El Niños have become more intense in the industrial age, which stands to worsen storms, drought, and coral bleaching in El Niño years. A new study has found compelling evidence in the Pacific Ocean that the stronger El Niños are part of a climate pattern that is new and strange.

It is the first known time that enough physical evidence spanning millennia has come together to allow researchers to say definitively that: El Niños, La Niñas, and the climate phenomenon that drives them have become more extreme in the times of human-induced climate change. Kim Cobb, the study’s principal investigator and professor in the Georgia Institute of Technology’s School of Earth and Atmospheric Sciences, said:

The study’s first author Pam Grothe compared temperature-dependent chemical deposits from present-day corals with those of older coral records representing relevant sea surface temperatures from the past 7,000 years.

On the right, satellite composition of El Niño in 1997, and on the left, El Niño in 2015.
On the right, a satellite composition of El Niño in 1997, and on the left, El Niño in 2015. Both were extreme El Niño events that new hard evidence says are part of a new and odd climate pattern. (Image: via NOAA)

With the help of collaborators from Georgia Tech and partner research institutions, Grothe identified patterns in the El Niño Southern Oscillation (ENSO), swings of heating and cooling of equatorial Pacific waters that, every few years, spur El Niños and La Niñas respectively.

The team found the industrial age ENSO swings to be 25 percent stronger than in the pre-industrial records. The researchers published their results in the journal Geophysical Review Letters. The work was funded by the National Science Foundation.

Slumbering evidence

The evidence had slumbered in and around shallow Pacific waters, where ENSO and El Niños originate until Cobb and her students plunged hollow drill bits into living coral colonies and fossil coral deposits to extract it. In more than 20 years of field expeditions, they collected cores that contained hundreds of records.

The corals’ recordings of sea surface temperatures proved to be astonishingly accurate when benchmarked. Coral records from 1981 to 2015 matched sea surface temperatures measured via satellite in the same period so exactly that, on a graph, the jagged lines of the coral record covered those of the satellite measurements, obscuring them from view.

In scuba gear, Georgia Tech professor Kim Cobb drills into corals in the tropical Pacific with a pneumatic coring drill to take samples for studies on recent and historic sea surface temperatures.
In scuba gear, Georgia Tech’s Professor Kim Cobb drills into corals in the tropical Pacific with a pneumatic coring drill to take samples for studies on recent and historical sea surface temperatures. (Image: Cobb lab via Georgia Tech)

Grothe, a former graduate research assistant in Cobb’s lab and now an associate professor at the University of Mary Washington, said:

First red flag?

In 2018, enough coral data had amassed to distinguish ENSO’s recent activity from its natural preindustrial patterns.

To stress-test the data, Grothe left out chunks to see if the industrial-age ENSO signal still stuck out. She removed the record-setting 1997/1998 El Niño-La Niña and examined industrial age windows of time between 30 and 100 years long.

The signal held in all windows, but the data needed the 97/98 event to be statistically significant. This could mean that changes in the ENSO activities have just now reached a threshold that makes them detectable.

What is El Niño?

Every two to seven years in spring, an El Niño is born when the warm phase of the ENSO swells into a long heat blob in the tropical Pacific, typically peaking in early winter. It blows through oceans and air around the world, ginning up deluges, winds, heat, or cold in unusual places.

Once El Niño passes, the cycle reverses into La Niña by the following fall, when airstreams push hot water westward and dredge up frigid water in the equatorial Pacific. This triggers a different set of global weather extremes.

Pam Grothe and Alyssa Atwood drill into a 5,000-year-old coral fossil on Kiritimati Island.
Pam Grothe and Alyssa Atwood drill into a 5,000-year-old coral fossil on Kiritimati Island. (Image: Cobb lab via Georgia Tech / Grothe)

Tropical Pacific corals record the hot-cold oscillations by absorbing less of an oxygen isotope (O18) during ENSO’s hot phases, and progressively more during ENSO’s cool phases. As corals grow, they create layers of oxygen isotope records, chronicles of temperature history.

Waves, repairs, contortions

Extracting them is adventurous: A research diver guides a chest-high pneumatic drill under the ocean. Its pressure hose connects to a motor on the boat that powers the drill after the diver has taken off her fins and weighed herself down on the reef.

She carefully angles the bit down the axis of coral growth to get a core with layers that can be accurately counted back in time. On occasion, waves put her and her safety diver through washing machine cycles. Grothe said:

Blowing models away

The physical proof taken from three islands that dot the heart of the ENSO zone has also thrown down scientific gauntlets, starkly challenging computer models of ENSO patterns and causes. A prime example: Previously unknown to science, the study showed that in a period from 3,000 to 5,000 years ago, the El Niño-La Niña oscillations were extremely mild. Cobb said:

Provided by: Georgia Institute of Technology [Note: Materials may be edited for content and length.]

Follow us on TwitterFacebook, or Pinterest

  • Troy Oakes

    Troy was born and raised in Australia and has always wanted to know why and how things work, which led him to his love for science. He is a professional photographer and enjoys taking pictures of Australia's beautiful landscapes. He is also a professional storm chaser where he currently lives in Hervey Bay, Australia.

RECOMMENDATIONS FOR YOU