Trade winds and temperatures in the tropical Pacific Ocean experience large changes from year-to-year due to the El Niño-Southern Oscillation, affecting weather patterns across the globe. (Image: via pixabay / CC0 1.0)
Correctly simulating ocean current variations hundreds of feet below the ocean surface — the so-called Pacific Equatorial Undercurrent — during El Niño events is key in reducing the uncertainty of predictions of future warming in the eastern tropical Pacific. That was revealed in a new study led by University of Hawai’i at Mānoa researchers and published in Nature Communications.
Trade winds and temperatures in the tropical Pacific Ocean experience large changes from year to year due to the El Niño-Southern Oscillation, affecting weather patterns across the globe. For example, if the tropical Pacific is warmer and trade winds are weaker than usual — an El Niño event — flooding in California typically occurs and monsoons in India and East Asia are detrimental to local rice production. In contrast, during a La Niña, the global weather patterns reverse, with cooler temperatures and stronger trade winds in the tropical Pacific.
Subscribe to our Newsletter!
Receive selected content straight into your inbox.
1997 El Nino with warm water (red); and 1988 La Nina with cool water (blue) in the Pacific. (Image: University of Hawaiʻi at Mānoa)
In Hawaiʻi, during El Niño there is usually less winter rainfall, larger surf on the north shore, and a higher chance for tropical cyclones threatening the islands. During La Niña, we typically see the reversed pattern for Hawaiʻi. These natural climate swings affect ecosystems, fisheries, agriculture, and many other aspects of human society. Computer models that are used for projecting future climates correctly predict global warming due to increasing greenhouse gas emissions, as well as short-term year-to-year natural climate variations associated with El Niño and La Niña. Malte Stuecker, the co-author and assistant professor in the Department of Oceanography and International Pacific Research Center at UH Mānoa’s School of Ocean and Earth Science and Technology, said:
“There is, however, some model discrepancy on how much the tropical Pacific will warm.”
Model simulations
Researchers have been working for decades to reduce the persistent model uncertainties in tropical Pacific warming projections. Many climate models simulate El Niño and La Niña events of similar intensity. In nature, however, the warming associated with El Niño events tends to be stronger than the cooling associated with La Niña. In other words, while in most models El Niño and La Niña are symmetric, they are asymmetric in nature.
Increased El Nino/ La Nina intensity enhances Pacific warming (L) and vice versa (R). (Image: University of Hawai‘i at Mānoa)
In the study, scientists analyzed observational data and numerous climate model simulations and found that when the models simulate the subsurface ocean current variations more accurately, the simulated asymmetry between El Niño and La Niña increases — becoming more like what is seen in nature. Corresponding lead author Michiya Hayashi, a research associate at the National Institute for Environmental Studies, Japan, and a former postdoctoral researcher at UH Mānoa, said:
“Identifying the models that simulate these processes associated with El Niño and La Niña correctly in the current climate can help us reduce the uncertainty of future climate projections. Only one-third of all climate models can reproduce the strength of the subsurface current and associated ocean temperature variations realistically.”
“Correctly simulating El Niño and La Niña is crucial for projecting climate change in the tropics and beyond. More research needs to be conducted to reduce the biases in the interactions between wind and ocean so that climate models can generate El Niño-La Niña asymmetry realistically.”
Stuecker concluded, saying:
“The high uncertainty in the intensity change of El Niño and La Niña in response to greenhouse warming is another remaining issue. A better understanding of Earth’s natural climate swings such as El Niño and La Niña will result in reducing uncertainty in future climate change in the tropics and beyond.”
Provided by: University of Hawai’i at Mānoa[Note: Materials may be edited for content and length.]Follow us on Twitter or subscribe to our email list
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checkbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.