NASA’s Lunar Flashlight Ready to Search for the Moon’s Water Ice

NASA's Lunar Flashlight satellite.

Earlier this year, NASA’s Lunar Flashlight mission underwent tests to prepare it for launch in November 2022. The solar-powered small satellite is shown here with its four solar arrays extended in a Georgia Tech clean room. (Image: JPL-Caltech via NASA)

Set for a November launch, the small satellite mission will use lasers to search for water ice inside the darkest craters at the Moon’s South Pole. It’s known that water ice exists below the lunar regolith (broken rock and dust), but scientists don’t yet understand whether surface ice frost covers the floors inside these cold craters. To find out, NASA is sending Lunar Flashlight, a small satellite (or SmallSat) no larger than a briefcase.

This illustration shows the Lunar Flashlight over the Moon. It will search for water ice in the darkest craters.
This illustration shows NASA’s Lunar Flashlight over the Moon. The SmallSat mission will have a very elongated orbit, taking it within 9 miles (15 kilometers) above the lunar South Pole to search for water ice in the Moon’s darkest craters. (Image: via NASA)

Swooping low over the lunar South Pole, it will use lasers to shed light on these dark craters — much like a prospector looking for hidden treasure by shining a flashlight into a cave. The mission will launch aboard a SpaceX Falcon 9 rocket in mid-November. John Baker, the mission’s project manager at NASA’s Jet Propulsion Laboratory in Southern California, said:

Subscribe to our Newsletter!

Receive selected content straight into your inbox.

“This launch will put the satellite on a trajectory that will take about three months to reach its science orbit. Then Lunar Flashlight will try to find water ice on the surface of the Moon in places that nobody else has been able to look.”

Fuel-efficient orbits

After launch, mission navigators will guide the spacecraft way past the Moon. It will then be slowly pulled back by gravity from Earth and the Sun before it settles into a wide, looping, science-gathering orbit. This near-rectilinear halo orbit will take it 42,000 miles (70,000 kilometers) from the Moon at its most distant point and, at its closest approach, the satellite will graze the surface of the Moon, coming within 9 miles (15 kilometers) above the lunar South Pole.

Before being integrated into its dispenser, which will eject the small satellite from the SpaceX Falcon 9 rocket after launch, Lunar Flashlight was fueled with a 'green' propellant at NASA’s Marshall Space Flight Center in Huntsville, Alabama.
Before being integrated into its dispenser, which will eject the small satellite from the SpaceX Falcon 9 rocket after launch, Lunar Flashlight was fueled with a ‘green’ propellant at NASA’s Marshall Space Flight Center in Huntsville, Alabama. (Image: via NASA)

SmallSats carry a limited amount of propellent, so fuel-intensive orbits aren’t possible. A near-rectilinear halo orbit requires far less fuel than traditional orbits, and the Lunar Flashlight will be only the second NASA mission to use this type of trajectory. The first is NASA’s Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment (CAPSTONE) mission, which will arrive at its orbit on Nov. 13, making its closest pass over the Moon’s North Pole. Barbara Cohen, Lunar Flashlight principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, said:

“The reason for this orbit is to be able to come in close enough that Lunar Flashlight can shine its lasers and get a good return from the surface, but to also have a stable orbit that consumes little fuel.”

As a technology demonstration, the Lunar Flashlight will be the first interplanetary spacecraft to use a new kind of “green” propellant that is safer to transport and store than the commonly used in-space propellants such as hydrazine. This new propellant, developed by the Air Force Research Laboratory and tested on a previous NASA technology demonstration mission, burns via a catalyst, rather than requiring a separate oxidizer. That is why it’s called a monopropellant. The satellite’s propulsion system was developed and built by NASA’s Marshall Space Flight Center in Huntsville, Alabama, with integration support from Georgia Tech Research Institute in Atlanta.

Shown here in early October, Lunar Flashlight underwent fueling activities and final testing in a Marshall Space Flight Center clean room before being packed up in preparation for shipment to Cape Canaveral Space Force Station, Florida.
Shown here in early October, Lunar Flashlight underwent fueling activities and final testing in a Marshall Space Flight Center clean room before being packed up in preparation for shipment to Cape Canaveral Space Force Station, Florida. (Image: NASA)

The Lunar Flashlight will also be the first mission to use a four-laser reflectometer to look for water ice on the Moon. The reflectometer works by using near-infrared wavelengths that are readily absorbed by water to identify ice on the surface. Should the lasers hit bare rock, their light will reflect back to the spacecraft, signaling a lack of ice. But if the light is absorbed, it would mean these dark pockets do indeed contain ice. The greater the absorption, the more ice may be at the surface.

Lunar water ice

It’s thought that molecules of water come from comet and asteroid material impacting the lunar surface, and from solar wind interactions with the lunar regolith. Over time, the molecules may have accumulated as a layer of ice inside “cold traps.” Cohen said:

“We are going to make definitive surface water ice measurements in permanently shadowed regions for the first time. We will be able to correlate Lunar Flashlight’s observations with other lunar missions to understand how extensive that water is and whether it could be used as a resource by future explorers.”

Cohen and her science team hope that the data the Lunar Flashlight gathers can be used to understand how volatile molecules, like water, cycle from location to location and where they may accumulate, forming a layer of ice in these cold traps. Roger Hunter, Small Spacecraft Technology program manager at NASA’s Ames Research Center in California’s Silicon Valley, said:

“This is an exciting time for lunar exploration. The launch of Lunar Flashlight, along with the many small satellite missions aboard Artemis I, may form the foundations for science discoveries as well as support future missions to the Moon’s surface.”

Provided by Ian J. O’Neill, Jet Propulsion Laboratory [Note: Materials may be edited for content and length.]

Follow us on TwitterFacebook, or Pinterest

Recommended Stories

From the 'Grave of Fireflies.'

8 Outstanding Books That Inspired Studio Ghibli Films

Fans were ecstatic when Studio Ghibli made its entire back library (save for the World ...

Artwork for the single 'The Wall' by Malaysian rapper Namewee.

Namewee’s ‘The Wall’: A Metaphor for the CCP’s Repression of Mainland Chinese People

Wee Meng Chee, also known as Namewee, is a Malaysian singer-songwriter based in Taiwan. In ...

Studio Ghibli.

Anime Bonanza: Ghibli Will Soon Be Streaming on Netflix

When it comes to anime, the works of Studio Ghibli are considered the pinnacle. And ...

OpenAI's logo.

The Dawn of AI Has Come, and Its Implications for Education Couldn’t Be More Significant

The release of OpenAI’s ChatGPT chatbot has given us a glimpse into the future of ...

U.S. Secretary of State Mike Pompeo.

Pompeo: America Must Take the Chinese Communist Party Head-On

U.S. Secretary of State Mike Pompeo recently stated that he wants the American government to ...

The festiavl of Hanukkah.

Hanukkah: The Jewish Festival of Lights (Compared with Christmas)

In 2019, Jewish communities across the world will be celebrating the festival of Hanukkah between ...

The ionized gas wind in Makani.

Astronomers Catch Wind Rushing Out of Galaxy

Exploring the influence of galactic winds from a distant galaxy called Makani, UC San Diego’s ...

David Matas at a dinner.

Human Rights Lawyer David Matas Talks on Crimes of Forced Organ Harvesting

Nobel Peace Prize nominee and international human rights lawyer David Matas has spent years researching ...

Sweet and Sour Prawns.

Recipe: Sweet and Sour Prawns

Sweet and sour dishes are very popular in China, although the Chinese tend to use ...

Send this to a friend