New Model for Matter in Neutron Star Collisions

A neutron star.

With the exception of black holes, neutron stars are the densest objects in our universe. As their name suggests, neutron stars are mainly made of neutrons. (Image: via Elizabeth Wheatley (STScI))

Neutron stars are the densest objects in our universe, except for black holes. As their name suggests, neutron stars are mainly made of neutrons. However, our knowledge about the matter produced during the collision of two neutron stars is still limited. Scientists from Goethe University Frankfurt and the Asia Pacific Center for Theoretical Physics in Pohang have now developed a new model that gives insights into the matter under such extreme conditions.

Illustration of the new method: the researchers use five-dimensional black holes (right) to calculate the phase diagram of strongly coupled matter (middle), enabling simulations of neutron star mergers and the produced gravitational waves (left).
Illustration of the new method: the researchers use five-dimensional black holes (right) to calculate the phase diagram of strongly coupled matter (middle), enabling simulations of neutron star mergers and the produced gravitational waves (left). (Image: via Goethe University Frankfurt am Main)

What is a neutron star?

After a massive star has burned its fuel and explodes as a supernova, an extremely compact object, called a neutron star, can be formed. Neutron stars are extraordinarily dense: To reach the density inside them, one would need to squeeze a massive body like our sun down to the size of a city like Frankfurt.

Subscribe to our Newsletter!

Receive selected content straight into your inbox.

In 2017, gravitational waves, the small ripples in spacetime produced during a collision of two neutron stars, could be directly measured here on Earth for the first time.

However, the composition of the resulting hot and dense merger product is not known precisely. It is still an open question, for instance, whether quarks, otherwise trapped in neutrons, can appear in free form after the collision.

Dr. Christian Ecker from the Institute for Theoretical Physics of Goethe University Frankfurt, Germany, and Dr. Matti Järvinen and Dr. Tuna Demircik from the Asia Pacific Center for Theoretical Physics in Pohang, South Korea, have now developed a new model that allows them to get one step closer to answering this question.

In their work published in Physical Review X, they extend models from nuclear physics, which are not applicable at high densities, with a method used in string theory to describe the transition to dense and hot quark matter., they extend models from nuclear physics, which are not applicable at high densities, with a method used in string theory to describe the transition to dense and hot quark matter, Dr. Demircik and Dr. Järvinen explained:

“Our method uses a mathematical relationship found in string theory, namely the correspondence between five-dimensional black holes and strongly interacting matter, to describe the phase transition between dense nuclear and quark matter.”

Next, the researchers hope to be able to compare their simulations with future gravitational waves measured from space to gain further insights into quark matter in neutron star collisions.
Next, the researchers hope to be able to compare their simulations with future gravitational waves measured from space to gain further insights into quark matter in neutron star collisions. (Image: Tim Dietrich, Arnaud Le Fevre, Kees Huyser via ESA / Hubble, Sloan Digital Sky Survey)

Dr. Ecker, who implemented these simulations in collaboration with Samuel Tootle and Konrad Topolski from the working group of Prof. Luciano Rezzolla at Goethe University in Frankfurt, added:

”We have already used the new model in computer simulations to calculate the gravitational-wave signal from these collisions and show that both hot and cold quark matter can be produced.”

Next, the researchers hope to be able to compare their simulations with future gravitational waves measured from space to gain further insights into quark matter in neutron star collisions.

Provided by Goethe University, Frankfurt am Main [Note: Materials may be edited for content and length.]

Follow us on TwitterFacebook, or Pinterest

Recommended Stories

Takaharu Tezuka-style kindergarten.

Combining Japanese Ingenuity With Kindergarten Design

A Japanese architect named Takaharu Tezuka wanted a kindergarten that kids would love. So he ...

Parents outside a Chinese kindergarten.

Chinese Media Ordered to Stop Reporting on Kindergarten Abuse

The Chinese government has ordered local media to halt coverage of a kindergarten abuse scandal ...

Giant trolls.

Thomas Dambo: The Artist Who Creates Giant Trolls Out of Trash

Thomas Dambo from Denmark has created something unique for the people of Copenhagen to enjoy ...

The Amazon rainforest.

Study Finds African Smoke Is Fertilizing Amazon Rainforest and Oceans

A new study led by researchers at the University of Miami’s (UM) Rosenstiel School of ...

A dead humpback whale.

Scientists Surprised at Finding a Dead Whale in the Amazon Rainforest

When thinking of whales, you would probably picture these majestic creatures in the oceans, surging ...

A Buddha statue.

Why a Divine Horse Knelt in Front of a Merchant — the Circle of Deeds

A long time ago, in ancient India, there was a Persian king in the country ...

A woodland road.

7 Characteristics to Ensure Good Fortune

“Thirty percent destiny, seventy percent hard-work” is the Chinese saying about the factors that determine ...

Mooncakes.

Mooncakes Act as Hong Kong Peoples’ Voice Against Extradition Bill

Eating mooncakes during the Mid-Autumn Festival is a traditional custom in China. This custom began ...

A stone figure discovered in Puerto Rico.

Relics of a Lost Civilization: Mysterious Stone Figures in Puerto Rico

A group of figurines discovered in the 19th century is now the subject of deep ...

Send this to a friend